

Experiences with development of antibody-based antiviral drugs

Qin Sun, Ph.D.

Office of Clinical Pharmacology (OCP), Division IV Office of Translational Sciences (OTS) Center for Drug Evaluation and Research (CDER), FDA

> ASCPT 2019 Annual Meeting - from molecule to patient

> > 3/16/2019

Disclaimer

- The presentation reflects the views of the author and should not be construed to represent the FDA's views or policies.
- The mention of commercial products in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the FDA.

FDA

Agenda

Background: viral infections

Antiviral mAbs:

- approved
- under development (based on publicly available data and not a complete list)

Clinical pharmacology related opportunities and challenges

- Fc-based $t_{1/2}$ enhancing strategy: in vitro and in vivo
- mAb PK in patients with organ impairment

Conclusions

Background: viral infections

- CMV (cytomegalovirus): causes serious disease in immunocompromised patients; some anti-CMV small molecules (SMs) associated with neutropenia or nephrotoxicity
- > **HBV** (hepatitis B virus): no functional cure; multiple SMs approved
- > **HCV**: virologic cure after treatment with direct-acting antivirals for 8 to 12 weeks
- HDV: higher rate of progression than other hepatitis and only occurs in HBV coinfected patients; no approved drug
- HIV-1 (human immunodeficiency virus-1): no functional cure; <u>ibalizumab</u> and SMs: NRTI (nucleoside reverse transcriptase inhibitor), NNRTI, PI (protease inhibitor), INI (integrase inhibitor), EI (entry inhibitor)

Background: viral infections

- Influenza: influenza A involved in pandemics; no approved drug for hospitalized patients with influenza infections
- RSV (respiratory syncytial virus): aerosolized ribavirin approved for treatment but not widely used; <u>palivizumab</u> for prevention of RSV in children at high risk
- > **Others** (clinical efficacy studies challenging, not possible for Smallpox):
 - Ebola, Zika, Dengue, Smallpox, Rabies, etc.
 - If clinical efficacy studies are not ethical/feasible, approval may rely on animal efficacy models.
 - Guidance for Industry: Product Development Under the Animal Rule

Note: not a complete list for all viral infections

Antiviral mAbs: approved

Synagis[®] (palivizumab)

- Approval year: 1998
- MOA (mechanism of action): RSV F protein inhibitor
- Indication: prevention of RSV in pediatric patients at high risk
- Dose regimen (intramuscular): 15 mg/kg monthly throughout the RSV season (5 doses)

Frogarzo[®] (ibalizumab)

- Approval year: 2018
- MOA: CD4-directed post-attachment HIV-1 inhibitor
- Indication: treatment of HIV-1 infection in adults with multidrug resistance, in combination with other antiretrovirals
- Dose regimen (intravenous): a single loading dose of 2,000 mg followed by a maintenance dose of 800 mg every 2 weeks

Antiviral mAbs: under development

- > publicly available data and not a complete list
- > does not include products discontinued from development

Indication	mAb	ΜΟΑ	Development Status
HIV-1	3BNC117/3BNC117LS	CD4 binding site of gp120	Phase II/Phase I
	VRC01/VRC01LS	CD4 binding site of gp120	Phase II
	VRC07-523LS	CD4 binding site of gp120	Phase I
	PGDM1400	V1V2 site of gp120	Phase I
	10-1074	V3 site of gp120	Phase I
	PGT121	V3 site of gp120	Phase I/II
	10E8V/10E8VLS	membrane proximal external region	Phase I
	PRO140	host CCR5 receptor	Phase III
	10E8V2.0/iMab	MPER/host CD4 binding site	Preclinical
	(bi-specific)		
	SAR441236	CD4 binding site/MPER/V1V2 site of	Phase I
	(tri-specific)	gp120	

Antiviral mAbs: under development

- > publicly available data and not a complete list
- > does not include products discontinued from development

Indication	mAb	MOA	Development Status
Influenza	CT-P27	hemagglutinin (HA)	Phase II
	MHAA4549A		Phase II
	VIS140		Phase II
	TCN-032	matrix 2 protein M2e	Phase II
RSV	MED18897	RSV F protein inhibitor	Phase II
	ALX-0171		Phase II
	(nanobody, inhalation)		
Ebola	ZMapp (2G4/4G7/13C6)	Ebola virus glycoprotein	Phase II
	REGN-EB3 (3470/3471/3479)		Phase I
	mAb114		Phase I
	MBP134 (ADI-15878/23774)		Preclinical
Rabies	CL184 (CR57/CR4098)	Rabies virus glycoprotein	Phase II
	SYN023 (CTB011/CTB012)		Phase II
	RAB-1		approved in India

Fc-based t_{1/2} enhancing strategy: in vitro and in vivo

Fc-based t_{1/2} enhancing strategy:

A (N434<u>A</u>), AAA (T307<u>A</u>/E380<u>A</u>/N434<u>A</u>), LS (M428<u>L</u>/N434<u>S</u>), QL (T250<u>Q</u>/M428<u>L</u>), YTE (M252<u>Y</u>/S254<u>T</u>/T256<u>E</u>)

MEDI8897:

- Indication: prevention of RSV for all infants (IM, Phase II)
- $t_{1/2}$ enhancing strategy: YTE modification

- <u>In vivo</u>:

 $t_{1/2}\!\!:$ 85-117 days in adults; 63-73 days in preterm infants once-per-RSV-season dose

- <u>In vitro</u>:

enhanced neonatal Fc receptor (FcRn) binding at pH 6.0

Ref: 1. Pediatr Infect Dis J. 2018, 37, 886; 2. Antimicrob Agents Chemother. 2017, 23, 61

Fc-based t_{1/2} enhancing strategy: in vitro and in vivo

- Some Fc variants with improved FcRn binding at pH 6.0 in vitro do not exhibit increased t_{1/2} in vivo.
- The t_{1/2} enhancing effect depends on both increased FcRn binding at pH 6.0 and minimal effect on FcRn binding at pH 7.4:
 - underestimation of binding effect at pH 7.4
 - affinity threshold (KD: 860 nM) at pH 7.4 determining IgG recycling efficiency
 - increased FcRn binding at pH 7.4 beyond the threshold offsetting the benefits of increased binding at pH 6.0

Ref: J Biol Chem. 2015, 13, 290, 4282

mAb PK in patients with organ impairment

Renal impairment:

FDA guidance: the clearance of therapeutic proteins (TPs) with MW<69 kDa may be affected by renal impairment (mAb MW: ~ 150 kDa)

Hepatic impairment (HI):

- FDA or EMA guidance: no information for biologics
- 2013 paper by FDA researchers Are HI studies necessary for TPs?

7 TPs (only 3 mAbs) with HI information Results inconclusive due to limited data Ref: Clin Ther. **2013**, 35, 1444

- New research – Does HI affect PK of mAbs? (TPs with HI data after 2013)

Almost no data for severe HI (n=0 or 1 for all) Limited data for moderate HI (4 mAbs/2 antibody-drug conjugates [ADCs] with n≥5) Sufficient data for mild HI (~ 20 mAbs with n=tens to hundreds) <u>Research team: Qin Sun, Shirley Seo, Simbarashe Zvada, Chao Liu, Kellie Reynolds</u>

mAb PK in patients with organ impairment

Hepatic impairment (HI):

-Significant exposure decrease for several mAbs or ADCs (mAb part):

Ado-trastuzumab emtansine ADC: \40%/70% in mild/moderate HI Evolocumab: \40%/50% in mild/moderate HI Brentuximab vedotin ADC: \35% in moderate HI (n=1 for mild/severe HI)

- Trend for AUC decrease/lower albumin level associated with lower exposure for additional mAbs
- Potential mechanisms:

factors affecting FcRn binding (endogenous IgG level), target-mediated drug disposition (TMDD), FcγR binding, etc.

- HI may impact the disposition of mAbs (or ADCs [mAb part])
- Additional data are needed, particularly for moderate/severe HI

Conclusions

Antiviral mAbs:

generally safe, long half-life (up to 3 to 4 months), less frequent dosing, good neutralization potency/breadth, increased resistance barrier (bi-, tri-, or multi-domain mAbs), minimal DDI concern

Multiple clinical pharmacology related challenges:

-Fc-based t_{1/2} enhancing:

<u>balance FcRn binding at both pH 6.0 and 7.4</u> no compromised efficacy and no increased immunogenicity

-mAb dose selection:

Specific population: <u>patients with hepatic impairment</u>; pediatric patients; patients with different levels of viral load/target expression or immune deficiency

Dose level/ratio for combination therapy (e.g., anti-HIV mAbs)

Inhaled mAbs (e.g., anti-flu or anti-RSV) with minimal systemic exposure (PK/PD correlation challenging/infeasible)

Acknowledgements

- ASCPT organization committee
- Dr. John Lazor
- Dr. Kellie Reynolds
- Dr. Shirley Seo
- Dr. Debra Birnkrant
- Dr. Jeffrey Murray
- Dr. Yow-Ming Wang
- Dr. Sarah Schrieber
- Jennifer Ng, PharmD intern student, SUNY Buffalo
- Shiwei Fang, PharmD intern student, University of Michigan

